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SUMMARY

Bayesian approaches to interpolation, quadrature and optimisation are discussed, based on representing
prior information about the function in question in terms of a Gaussian process. Emphasis is placed
on how different methods are appropriate when the function is cheap or expensive to evaluate. A
particular case of expensive functions is a regression function, where ‘evaluation’ consists of gaining
observations (with the small added complication of measurement error).
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1. PRIORS FOR FUNCTIONS

Numerical techniques of interpolation, optimisation and quadrature have been studied for a
very long time. They are all concerned with obtaining numerical approximations to specific
properties of a given function — function values, locations of maxima and minima, integrals
— that are not available exactly. In each case, the technique is based entirely on numerical
evaluation of the function at a discrete set of points. The central theme of this paper is
that all these problems are problems of inference. Inference is required about some unknown
parameter — function value, integral, etc — based on data which are the function evaluations.
Furthermore, of course, the mode of inference we shall use will be Bayesian. The formal
structure is as follows.

The function in question is f(-), taking values f(z) for z € X. We may or may not
have an explicit expression for f(-), but in either case the numerical value f(z) is unknown
a priori. The prior distribution therefore consists of a distribution for the random function
F(-). We then ‘observe’ the values f = (f(z1),..., F(za))F of the function at n discrete
points in X. The posterior distribution is simply the prior distribution conditioned on these
values. Although in principle any prior distribution might be used, to reflect specific prior
beliefs about f(-), as always it is the normal distribution that is the most tractable, and this
paper will concentrate on techniques arising from representing prior information about f(-)
in terms of a Gaussian process.

We shall assume the following hierarchical prior model. First,

F()1B, o* ~ N(h()'8, o®u(:, -)). (1)

That is, f(-) is a Gaussian process, conditional on hyperparameters 3 and ¢, with mean

E(f(2)|8, 0?) = h(z)TB and covariance function Cov (f(z), f(z')|B, 02) = o?v(z, ).

The vector h(-) of ¢ regressor functions h(z) = (hi(z),..., hq(:n))T, and the covariance
function v(-, -) are known. The prior distribution of 8 and ¢ is then given by

Blo? ~ N(bo, o2B; 1), - (2)

o? ~ soxar- (3)
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The special case of an uninformative prior dlsmbutlon on the hyperparameters, represented
by By =0, sg = ap = 0, so that p(8, 02) o o2, will often be appropriate.

This is about the most general structure that yields tractable posterior analysis. Some
further generalisation can be achieved by letting a function of f(-) have this distribution; for
instance, we could let f(z) = fi(z)+ fo(z) fs(z), where fi(-) and f5(-) are known functions
and f3(-) has the distribution (1)-(3). The mathematics would be essentially unchanged.

Gaussian process priors for functions have been proposed several times in a variety of
contexts, as will be apparent from the references throughout this paper.

2. INTERPOLATION AND SMOOTHING

2.1. Cheap and Expensive Functions

Another theme of this paper is that the most appropriate methods for a given problem depend
on how costly it is to obtain each evaluation f(z;) of the function. In interpolation, for
instance, it is implicit that the function is expensive to evaluate. Otherwise, if we wanted f(x)
we would just evaluate it exactly rather than approximate it by interpolation. Interpolation
was a very important technique before the ready availability of computers. Then for most
complex functions the only recourse was interpolation in a book of tables wherein every
figure was the result of somebody’s very laborious computation. Although this is not true for
the commonly used functions today, there is still no shortage of functions whose evaluation
is impractical except by extensive use of the most powerful computers. See Sacks, Welch,
Mitchell, and Wynn (1989).

Optimisation and quadrature (numerical integration) are important even for cheap func-
tions. When maxima/minima and integrals cannot be found analytically, numerical methods
are essential. Particularly in high dimensional spaces, solving these problems will typically
require very large numbers of function evaluations. Many methods then become impractical,
even with cheap function evaluations.

2.2. Interpolation

Given the prior distribution (1)-(3) and data f, the posterior distribution is easily obtained.
See for instance O’Hagan (1978). We find

f()I:Ba GZ) f ~ N(TI’L('), 02w(_, ))7 (4)
where
= h(z)" B+ t(z)T A7 (f - HP), (5)
(”(fﬂ 1) h(z1)T
v(z, Tp) h(z,)T
(’u(wl, z1) ... v(x1, Tn)
A= : , (7)
v(Zn, z1) ... v(Tn, Tn)
w(z, ') = v(z, ') — t(x)T A" 1t(z). (8)
Also

ﬂ|0'2, f~ N(b7 UzB*l), (9)
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where
b= B 7Y (Bobo + HT A1), (10)
B=DBy+H'A'H. (11)
Finally,
o?|f ~ sxz?,
where @ = ag + n — g and
s=so+ fT{A™ -~ AT'HHT A H) ' HT A7} 1. (12)

It follows that the posterior distribution of any particular f(z) is ¢t with degrees of freedom
a, mean

m*(z) = h(z)Tb+ t(z)T A"L(f — HD) (13)

and variance s w*(z, z)/(a — 2), where
w*(z, «') = w(z, z') + {h(z) — HT A t(z)}' B Hh(z') - HT A~ ()} (14)

The natural interpolant is (13). In particular of course, at the observation points x; we have
m*(z;) = f(z;) and w*(z;, z;) = 0.

We have already said that interpolation is only relevant for expensive functions. A related
point is that when the function is very expensive it can be worth spending a great deal of
effort to locate good design points (z1,...,z,). Sacks, Welch, Mitchell and Wynn (1989)
develop designs to minimise the integral of the posterior variance

/X'w*(a:, z)dz

over the space A, and this is easily generalised as in O’Hagan (1978) to minimise a weighted
average

/ w¥(z, z) dQ(z).
X

Sacks and Schiller (1988) advocate minimising the maximum of w*(z, ) over a subset of
X.

2.3. The Prior Covariance Function

The interpolant (13) has a simple and natural form. The first term is the fitted regression
h(z)Tb corresponding to the regression model h(z)T3 assumed for the prior mean. The
estimate of the coefficient vector, b, is a familiar Bayesian, weighted average of the prior
mean by and a generalised Least Squares estimate B=(HTA'H)"YHTA~1f. In the case

of a non-informative prior, b reduces to .

The second term in (13) is the interpolant of the residuals f — Hb from this fitted line,
and ensures that m*(z) interpolates the actual observations. This term takes the form

t(z)TA™Y(f — Hb) = i kiv(z, i), (15)
i=1

where the k;’s are the elements of the vector A”l( f — Hb). Indeed, these are the unique
coefficients that make the right hand side of (13) interpolate the observations. The interpolant
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(13) will have properties of smoothness, such as differentiability, if and only if the prior
covariance function v(-, -) has those properties. This is an important guide to the form of
covariance function that is appropriate. In particular, the one-dimensional Markov form

v(z, ') = exp{-b|z — 2|} (16)

used by Blight and Ott (1975) produces an interpolant (13) that is not differentiable at the
observed points. The stationary Gaussian form for ¢ € RP,

v(z, z') = exp{—b{x — )TV (z - )} (17)

is used by O’Hagan (1991) and Sacks, Welch, Mitchell and Wynn (1989), and produces
smooth interpolation, infinitely differentiable everywhere. O’Hagan (1978) also uses (17), but
in a rather different model from (1)—(3). Wahba (1978, 1983) chooses covariance functions
that make the interpolant a spline function.

2.4. Example

An interesting example of interpolation is drawing contours. Consider the contours of the
bivariate density function proportional to (6, @) = (1+62)72(1+ ¢?)~2, where 8 and ¢ are
independent ¢ random variables with 3 degrees of freedom. It is easy to solve w(6, ¢) = ¢
for 8 =0, or ¢ = 0 or @ = *¢. This gives eight fixed points on any contour line. Figure 1
shows three contours, at ¢ = 0.4, 0.03, 0.001, drawn by interpolating these eight points in
each case. In order to do this, I set up the unknown function as a vector-valued f(z) taking
values in the plane, with z taking values in [0, 8). Then f(0), f(1),...,f(7) are the eight
‘observed’ points in sequence:

f(O) = (dla O): f(}-) = (d27 d?),f(z) = (07 dl)af(g) = (—d27 dQ)) .- :f(7) = (dQ’ - d2)’

where

dy = (c"]'é - 1)1'5, dy = (c"ll4 ~ 1)]/2.

The preceding theory is easily generalised to vector f(-) (as in O’Hagan (1978)). The
covariance function was defined to be

Cov (f(z), f(a")) = exp{-blle — 2'||*} Iz,

with
lz — &/|| = min (| - o/|, 8 — |z — )

reflecting the fact that the contour is a closed loop. The case ¢ = 0 was used, removing the
regression term and giving f(-) a zero prior mean.

The smoothing parameter b in the covariance function was chosen to give good fit of
the interpolated contour to the true value, in the following way. The value of the density
m(m*('2)) was found for the interpolated value z = %, and b was adjusted to make this close
to the required value c. The resulting interpolated contours are extremely good. m(m*(z))
was found for a large selection of = values and found to be within 2% of the true c¢. (This
is for the outermost, and most difficult to interpolate, contour. Accuracy to within 0.001%
was achieved on the innermost contour).

An alternative approach, transforming to polar coordinates and representing the contour

as a scalar function of the angle, proved to be less accurate (and could anyway fail for a
non-convex contour).
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Figure 1. Contours of product of independent t distributions.

2.5. Observing Derivatives

There is a parallel theory for derivatives of f(-) itself. By considering the random variable
Xs = 6" {f(z+8)— f(z)} and letting § — O (for scalar z) it is easy to show that providing
the random sequence X converges, and providing that the indicated derivatives of h(-) and
(-, +) exist, f(-) and all its derivatives are jointly normally distributed with

B @)|6, o) = W()T5, (18)
Cov (fi(z), fi(2)IB, 0%) = o™ (z, o), (19)
where
Fiz) = df(z)/dz?, W (z)=d'h(z)/ds’ and vii(g, o) = d"u(z, ') /dz/da".

Since the covariance function (16) is not differentiable, nor is f(-) in that case. On the
other hand, it turns out that (17) is sufficiently smooth for f(-) to be infinitely differentiable
everywhere with probability one (if h(-) is). This is another argument in favour of (17) rather
than (16) as a prior covariance function. We are generally dealing with functions that we
know to be differentiable, so that (16) simply does not represent that prior belief.

We can now consider making observations not of f(-) but of its derivatives. The idea
is potentially useful in all problems. Although derivatives are often unavailable when f )
is expensive, for cheap functions we can generally ‘observe’ them. It may in fact be even
cheaper to observe f(z) when we are also observing f{z). In the theory of Section 2.2
we need only replace the functions v(-, -) and h(-) in (6) and (7) by appropriate derivatives,
using (18) and (19). The result (13) will then not only pass through any observed values
f(z:) but agree with any observed derivatives.
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2.6. Smoothing

It is also simple to allow for observation error. If the function (or derivatives) cannot be
evaluated, ‘observed’, exactly, the observation f can be represented as normally distributed
with mean true values (f(#1),..., f(zn)) and variance matrix o2Vy, e.g. V§ = vgl,. Then
we simply add V; to A as defined in (7). This can occur with very expensive functions, but
it can of course also be viewed in terms of a very standard statistical problem. In regression
modelling, as an alternative to assuming that the regression function follows some simple
parametrised form, we can let it be an arbitrary function f(-). The prior distribution (1)
(3) then says that the prior expectation of f(-) is a standard linear model h(-)T(3, but the
Gaussian process prior allows it to deviate smoothly from that form. This is the approach
used in Blight and Ott (1975) and O’Hagan (1978). In the terms of this paper, statistical data
are expensive function evaluations.

With A redefined to include the error Vy, (13) no longer passes through the observed
points. Instead of interpolation, we have smoothing. If V; is large, m*(z) is just the fitted
linear model A(z)Tb.

2.7, Implementation

In implementation of these methods, the major practical difficulty is that of inverting the A
matrix. Given n observations, this is an n xn matrix, and numerically inverting it is an order-
n® operation. For sufficiently expensive functions, this will not be a problem, and anyway
only needs to be done once, for any number of interpolations from the same data. Otherwise,
if the function is only moderately expensive to evaluate and n is large, interpolation at any
given point can be computed using only a more feasible number of nearest observations to
that point.

Although A may be inverted analytically if we use the covariance function (16), so
reducing the computation to order-n?, we have rejected this function because of its poor.
interpolation properties. Analytic inversion of A is not possible with (17) or other realistic
covariance functions. In two or more dimensions, however, O’Hagan (1991) shows that
dramatic reduction of effort may be achieved if the observations lie on a rectangular grid.
See also the discussion of tetrahedral designs in Section 3.3 below.

3. QUADRATURE

3.1. Inference about an Integral

Let

b= [ f@)aM(a) (20)

X
the integral of f(-) with respect to some measure M(-) on X. This formulation is very
general. For instance M (-) might be Lebesgue measure on X = RP for vector z, so that
k is just the (Lebesgue) integral of f(-). Or if M(.) is Lebesgue measure on C C RP, and
M(B)=0if BNC = ¢, then k = [, f(z) dz.
The posterior distribution of % is given by (9), (12) and

klf) 187 0-2 ~ N(’I’I'Lk, 0_2wk) (21)
where

my = /X m(z) dM (z), (22)

wy = /X w(z, o') dM(z) dM(z). @)
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Its marginal posterior distribution is therefore ¢ with degrees of freedom a and mean
mi = [ m*(a)aM (@) = KT+ £TA(] — HO), (24)
X

where

B = /X hz)dM(z), t* = /X H(z) dM (z). (25)

This technique is called Bayesian quadrature by O’Hagan (1991), where it is explored in
some detail. Earlier treatments are described in the review of Diaconis (1988).

3.2. Bayesian Application

Integration of complex, intractable, and often high-dimensional, posterior densities is a major
interest in Bayesian statistics. Consider, therefore, two separate Bayesian analyses. One gives
rise to a posterior density which we only know as proportional to f(-) (obtained as the product
of prior density and likelihood). The second Bayesian analysis is the one considered in this
paper, providing Bayesian inference about f(-), and in particular about integrals of f(-). The
first analysis is only of interest here to provide the context for f (-). Specifically, f(:) is
proportional to a density function, and given a reasonable amount of information may be
expected to be smooth, and probably unimodal.

Suppose that f(8) is proportional to a density function for a random vector § € RP (the
parameter vector in the first Bayesian analysis). Then we wish to estimate

[roreace), (20

identifying dM(-) in (22) with r(-)dG(:) and X with RP. The interpretation of (26) is that
the distribution of @ is represented as a density f(f) with respect to a measure G(-) on
RP and we wish to find the expectation of (). Or strictly, since the density of 4 is only
proportional to f(8), the expectation of r(6) is (26) divided by [ £(8) dG(6), which is itself
the case r(#) = 1 of (26). Inference about ratios of integrals is discussed in O’Hagan (1989).

Choice of the measure G(-) is an important part of the prior specification. It would not
be reasonable for a typical density in the usual sense, of a density with respect to Lebegue
measure, to be represented by the prior distribution (1)-(3). However, if G(-) is a suitable
multivariate normal probability measure, then it becomes reasonable to model f(-) in this
way. O’Hagan (1991) deals specifically with ‘Bayes-Hermite’ quadrature, in which G(') is
multivariate normal (and without loss of generality is assumed to be the standard normal,
N(0, I)) and the covariance function also takes the ‘Gaussian’ form (17). These choices
have the effect of allowing the integrals (25) to be performed analytically. It is essential
to be able to do this when f() is cheap to evaluate, as is typically the case when it is the
posterior density in some other Bayesian analysis. Otherwise, the estimate (24) depends on
integrals which are no easier to evaluate than the original problem (20).

3.3. Multidimensional Designs

Inversion of A was mentioned as a practical problem in Section 2.6 and is even more im-
portant when f(-) is cheap. To integrate a high-dimensional function inevitably requires the
number of function evaluations, n, to be large. Although the evaluations may themselves be
cheap, inversion of A requires order-n® computation and so completely dominates the exer-
cise. In contrast the Monte Carlo method, described in the context of Bayesian applications
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by van Dijk and Kloek (1980, 1984) and Geweke (1989), processes n function evaluations in
order-n computations. (An important new variant on Monte Carlo methods is given by West
(1991).) Although Bayesian quadrature makes vastly more efficient use of the information
in each function evaluation, Monte Carlo can make so many more function evaluations that
it is generally a superior technique in high dimensions. It should also be mentioned here that
recent applications of the ‘Gibbs sampling’ technique are proving even more effective than
Monte Carlo for such cases; see Gelfand and Smith (1990), Gelfand, Hills, Racine-Poon and
Smith (1990).

Nevertheless, it is of interest to develop Bayesian quadrature of multiple integrals, for
two reasons. First, for sufficiently expensive functions it is essential to make maximum use of
function evaluations, for which purpose Bayesian quadrature is the best available technique.
Second, by suitable choice of design points 21,.. ., , it is possible either to make inversion
of A analytically feasible or to reduce it to a much smaller problem. An example of the
latter is the development of cartesian product designs in O’Hagan (1991), which exploits a
Kronecker product form for A. We present here an even simpler design where A can be
inverted analytically.

Suppose that the points z1, ... ,zp41 lie on a regular simplex in RP. That is, the distance
is the same between all pairs of points. Then with covariance function (17), A takes the
intraclass form, where all diagonal elements are equal and all off-diagonal elements are equal.
This matrix is trivial to invert and the following results are then easy to derive. We assume
the Bayes-Hermite form, combining (17) with letting G(-) be the N(0, I,) measure. We also
let A(z) =1, so that the regression part of (1) consists just of an unknown mean (3. Then
let (z1,...,Zp+1) be a simplex centred on the origin, with all points at a distance d from the

origin, so that the distance between pairs of points is d{2(p + 1) /p}]‘é. Then the posterior
variance of the simple integral [ f(6) dG(6) is minimised by setting

d®=p(2+p)(1 + 2b) In(1 + 2b){2b(p + 2 + 4b + 4pb)} 1. (27)

Setting b = 1 and evaluating (27) for various p we find the optimal tetrahedral designs shown
in Table 1.

p 1 2 3 5 10 100
d 0.6704 09077 1.0849 13640 18792 5.7636

Table 1. Distance d from origin of points in optimal tetrahedral design in p dimensions.

As p — oo, d>/p — (1 + 2b) In(1 + 2b){2b(1 + 4b)}~L. Therefore in the case b = 1
shown in Table 1, d is asymptotically 0.5741 p]é. '

Such designs are admittedly of little practical importance. They may provide a very
cursory and quick exploration of a multidimensional function, but p+1 points in p dimensions
is far too few for adequate integration. Conversely, the product designs require of the order of
mP observations, which is impractical when p is large. Good accuracy should be achievable
with far fewer observations. Much work remains to be done on Bayesian quadrature in
many dimensions, but there are some interesting points already to consider. For instance,
the optimal tetrahedral designs expand in distance from the origin proportionally to ,/p as p
increases, and this is also observed in optimal product designs; see O’Hagan (1991).

Some idea of the likely patterns of good designs may be found from identifying small
optimal designs. Optimal designs of n = 3, 4 and 5 points in p = 2 dimensions have been
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found for the model assumed in Table 1. The three point tetrahedral design in Table 1 proves
to be the optimal three point design. The optimal four point design might be expected to be
a square, but it is not. Nor is it a rectangle (a 2 x 2 product design), but a skew rhombus.
The optimal five point design is a kind of flattened pentagon. These designs are shown in
Figure 2. Note that the model is spherically symmetrical, so rotations of these designs around
the origin are equally good.

]

1.3
< X
1~
X
Q.3+
O~ ¢ X ¢
0.5+
x
- o
o X
1.3
Y ! T T T f T
"1.3 "t 0.3 o] 0.3 1 1.3

Figure 2. Optimal 4(= o) and 5(= x) point designs in two dimensions.

These findings suggest that optimal designs will not in general have any natural geometric
form.

3.4. The Value of Observing Derivatives

The possibility of using observations of derivatives of the function in a quadrature problem
does not seem to have been explored before. Yet the development in Section 2.5 above
makes it clear that to do so adds no extra complexity to the analysis. I can report here only
the results of some simple computations in one dimension, taking the Bayes-Hermite context
again. :

The optimal n point design, at least for small n, comprises only direct observations of the
function, even when each observation is allowed to be either of f(z;) or its first derivative
f'(z;). If this optimal n point design is used, observing f'(z;) in addition to f(z;) at all
those points adds no information about the integral. (I would like to have a theoretical proof
of this rather interesting empirical result.) All of this seems to suggest that nothing is to be
gained from using derivatives (at least the first derivatives), but their use can be valuable in
a sequential context. Suppose that the optimal two point design has been used, and we now
decide to take an extra observation to improve the posterior variance of the integral. Then
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the best third observation is of a first derivative, rather than of the function itself. The same
is true of adding one or two further points to the optimal three point design.

Further investigation is needed of the use of derivatives in quadrature.

4. OPTIMISATION
4.1. Optimising the Interpolant

Optimisation is the problem of finding a minimum (or maximum) of f(-). Numerical analysts
have constructed powerful algorithms for optimising functions in many dimensions, and the
important feature of such algorithms is their sequential nature. Based on some or all of the
function evaluations made up to the current iteration, the algorithm determines one or more
new points to be evaluated in the next iteration, with the objective of homing in on the
minimum.

It is of particular interest to consider how the Bayesian approach may improve efficiency
for expensive functions. Suppose that n function evaluations have been made, and the poste-
rior mean of the function is now the interpolant (13). With no further function evaluations of
the expensive f(-), we can now optimise instead the cheap function m*(-). (Even for large
n, we need only invert A once for any number of evaluations of m*(+), so this is genuinely
a cheap function.) Various search strategies could now be devised to determine the next
evaluation of f(-) required at each iteration, but the simplest is just to set .1 to argmin
m*(-). Here is a simple example of the effect of this strategy.

The function was set at f(z) = —z—2 In z. The covariance function (17) was used with
b= 0.1. (Similar results are achieved for a range of b values.) f (x) was initially evaluated
at 3 = 0.1, 9 = 2.5, z3 = 4.9. The algorithm subsequently produced z4 = 3.173,
x5 = 2.563, g = 2.244, z7 = 2.069, 25 = 2.00744, 29 = 2.000103.

Other similar examples of this technique, albeit only in one dimension, have generally
produced rapid convergence once a good spread of points has been established. Indeed,
convergence is often as fast as the Newton—Raphson algorithm, which requires both first and
second derivatives to be available (and so makes two evaluations at each step). In the case
of expensive functions, derivatives will very often be unavailable, and standard optimisation
methods using only function evaluations are very much slower. This Bayesian technique
therefore promises to be highly effective in such cases.

4.2. Response Surfaces

Section 2.6 introduced the idea of a regression function as an expensive function. Obser-
vations can only be obtained by experimentation, which is typically costly compared with
computation time, and are then subject also to experimental error. An important problem in
industrial statistics is to optimise a regression function. The techniques of response surface
methodology are also sequential, therefore. See Box and Draper (1987). Optimising a fitted

non-parametric regression using the smoothing techniques of Section 2.6 could undoubtedly
contribute to that methodology.
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DISCUSSION

L. M. BERLINER (Ohio State University, USA)

Professor O’Hagan presents us a paper with two goals. The first goal is to review efforts
in Bayesian numerical analysis based on Gaussian random function prior specifications. The
second goal is to present some interesting applications of such specifications of current
interest. Professor O’Hagan succeeds on both accounts; We should be grateful for this
well-written and informative paper.

The first point for discussion I wish to raise involves the role of subjective Bayesian
thinking in the use of Gaussian random field priors. In the second paragraph of the paper,
O’Hagan writes “... this paper will concentrate on techniques arising from representing
prior information about f(-) in terms of a Gaussian process”. My question is “What prior
information is actually represented?” Specifically, consider (1). One can readily ascribe
meaning to the specification of the mean function of the process. However, I believe the
specification of the covariance function v(-, -) is a difficult problem. While we may find some
comfort in being told that v controls the degree of smoothness of realizations of the process,
I do not believe we have a clear picture of what typical realizations of a Gaussian process
actually look like for various v. The motivation of my concern is my perception of the view
users of these methods seem to take concerning results. Suppose we observe f at the design
points without error. The posterior mean can be drawn as an interpolant of the data and,
because of the advertised advantage of the Bayesian approach to function estimation, we can
also associate posterior variances with our function estimates. The success of the approach
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may be well and good, but as a skeptical discussant, I suggest that the posterior mean
may typically be smoother than typical realizations of the posterior or prior process. (This
phenomenon may be amplified in the realistic, hierarchical model suggested by O’Hagan in
that the posterior process involves {-distribution tails.) Has the posterior mean computation
actually been averaged over realizations, which may or not seem reasonable, to produce a
“nice” function? If “almost all” realizations of the process are unbelievable, what solace can
we really take in the ability to find posterior variances?

To potentially help to alleviate the concerns raised above, consider the following:

() I think intuition can be obtained by thorough examination of the covariance function
v. In one dimension, consider the common covariance function (see (17))

v(z,z') = exp{-b(z — z')?}.

This function is very well understood by statisticians, and, hence, we may have a reasonable
“feeling” for the implied covariance on f. Perhaps we can learn a little more by investigating
the implied (see (18) and (19)) functions (let f 1 denote the first derivate of f)

v = Cov (f(2), f1(z")) = 2b(z — o) exp{-b(z — =)?}
and
vt = Cov (f1(z), /(&) = 20[1 - 2b(z — &')?] exp{~b(z — =')*}

For b = 2, the three corresponding correlation functions are graphed as functions of (z — ')
below. Of course, both v and v%! are even functions about zero, while ¥%! is an odd function.
Note that f(x) and f!(x) are uncorrelated. The absolute value of the correlation between
f(z) and f1(2/) grows as |x — /| does to a maximum of e~%/2 at |z — 2| = (2b)~1/2,
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(ii) I think analysis beyond the reporting of the posterior means and variances should
become a standard part of applied work in this area. For example, when possible, analysts
might consider providing several “approximate” realizations from the appropriate posterior.
If the realizations look ridiculous, the analysis may be questionable. Such realizations could
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be obtained as simulated random functions from the posterior. One possible method involves
“brute force”; namely, we might approximate the process as an appropriate multivariate
normal distribution. More sophisticated simulation techniques deserve investigation.

(iti) Depending on the application, the following suggestion may be useful. It may be
desirable to try to model the real prior information available through the mean, or parametric
hierarchical models for the mean, of the process. After exhausting prior information, the rest
of the uncertainty is modelled as a Gaussian random process.

In the balance of this discussion, I will focus on the applications O’Hagan discusses. The
main ongoing work described involves Bayesian interpolation, integration, and optimization
based on Gaussian random fields. The primary contention of the author is that the analysis
of such problems via Gaussian random process methods is appropriate when the function
f of interest is extremely expensive to compute. The cost may involve time and/or money
associated with experiments either in the “field” or on the computer. For such problems the
notion of attempting to use data in an efficient manner as emphasized by O’Hagan is quite
sensible.

In Section 3, O’Hagan presents discussion of Bayesian quadrature in which the integrand
is modeled as a realization of a Gaussian process. The analysis seems reasonable, though
some care should be given to rigor. For example, the estimate given in (22) need not
exist if, as suggested as an example by the author, M is Lebesgue measure on RP. Also,
I doubt that the methods described by the author in the context of numerical Bayesian
integration are, typically, serious competitors to sampling/simulation based methods. Forgive
the repetition, but, I must ask when a Gaussian random process model is actually sensible for
the likelihood-prior product? Also, sampling based methods such as Gibbs’ Sampling enjoy
the advantage of producing a sample from the posterior distribution, estimates of various
marginal posteriors, as well as estimates of various posterior expectations. These comments
apply to day-to-day Bayesian work. However, in defense of the current paper, it is difficult
for me to imagine performing a Gibbs’ Sampling analysis for a problem in which a single
(efficiently programmed) computation of the function of interest requires several hours of
supercomputer time.

O’Hagan presents optimization problems as another potential application of Gaussian
random function analyses. While I agree that optimization problems may be a rich arena for
the application of these methods, I think O’Hagan’s discussion in this context falls short of
what it should have been. First, the example analyzed is far too simple to be taken seriously
as a test case. Though not exploited in the current paper, the extreme complexity functions
often of interest in global optimization may lend credence to Gaussian random processes as
priors. Also, there are various Bayesian and pseudo-Bayesian methods not mentioned by
the author. Substantial, and directly pertinent, work based on Gaussian processes has been
done in a series of contributions by J. Mockus (1989). Other work on optimization with a
Bayesian flavor include Laarhoven (1988) and Laud, Berliner, and Goel ( 1989).

I was somewhat disappointed in the discussion of applications. I wish O’Hagan had told
us more about the role of real Bayesian thinking for Gaussian processes in areas in which
such methods are almost becoming routine. (See Wahba, 1989, for references.) For example,
the computation of the posterior mean of a Gaussian random field is known as Kriging in the
geostatistics literature; in some oceanography circles, a special case is known as “objective
analysis”. (What a great name!) Bayesian thinking has much to offer in these applications.
For more evidence, see the exchange between Cressie (1990) and Wahba (1990).

In conclusion, I have emphasized that, in principle, in each application of the methods
discussed, one should ask to what degree the Gaussian random field prior actually reflects
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prior beliefs. While I believe this question is fundamental, I am not a fool; I also believe in
using procedures which seem to work even if a firm footing for the procedures is not available.
Statisticians and other mathematical modelers must surely take such a view in order to actually
do, rather than just talk about, something in practice. However, this operational view produces
answers which must always be treated with a degree of suspicion commensurate with the
level of belief in the model.

B. BETRO (CNR-IAMI, Italy)

In (continuous) optimization, we must distinguish between local problems, in which the
function to be optimized (objective function) is assumed to be unimodal, and global problems,
in which the global optimum is sought in absence of guaranteed unimodality. In the first
case, a quadratic model of the function is adequate in a neighborhood of the extremum, and
efficient methods exploit this local structure. It is hard to believe that the introduction of a
stochastic model would improve the situation. Considering the example given in the paper,
minimization of the function x — 2log z in the interval [0,5] by subroutine EO4ABF in the
NAG library gives, after 9 function evaluations, 1.999999995 as an estimate of the minimum.
Notice that EO4ABF does not require evaluation of derivatives.

The fact with stochastic processes, in particular with Gaussian processes, is that their
sample paths are far from being unimodal. Therefore they are better suited for global, rather
than local, optimization problems. Unfortunately, as it is clear from (15), the optimization of
the interpolant still requires the solution of a global optimization problem which, although
dealing with a function cheaper than the original one, is not necessarily a simpler one. In one
dimension the interpolant is possibly unimodal between the evaluation points, so that global
optimization is affordable, but in the multidimensional case the situation obviously becomes
dramatically worse.

There is a certain amount of literature on the use of Bayesian methods for global op-
timization. Other approaches, different from those modelling the objective function by a
stochastic process, have been proposed. For a recent survey see Betrd (1991).

D. E. MYERS (University of Arizona, USA)

In examining a new derivation it is important to ask whether a new interpolator is
obtained, or, if not, whether it provides new properties or whether it is more general than
other developments. As given in the paper the interpolator is

m*(z) = Sky(z, 2;) + Thih,(z). (eq.13)

Using the uninformative prior on the hyperparameters wherein By = 0 and using the notation
in the paper, the coefficients in m* are obtained as the solution of

& 31 [6] o0

k is the vector of k;’s. Under weaker conditions than used in the paper the interpolator can
be rewritten as
m*(z) = Zi(z) f () (M2)

A Hill| _ [t
5] ] - [ 043
The system (M3) can also be directly obtained by requiring that (M2) be unbiased and have
minimum error variance, which is then given by w*(z, z). Eq. 13 is known in the numerical

where
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analysis literature as the radial basis function interpolator, Micchelli ( 1986). Both the thin
plate and the smoothing spline are special cases. The form given by (M2) is known as
the kriging estimator in the geostatistical literature. The equivalence of eq. 13 and M2
is well-known, Myers (1988). However either form is more general than indicated by the
specific Bayesian analysis given in the paper. For example, conditional positive definiteness
(with respect to the h; ) of the kernel function v is sufficient to ensure the invertability of the
coefficient matrix in either (M1) or (M3) and hence to uniquely determine an interpolator. The
assumption of normality precludes the use of conditional positive definite kernels. The prior
should instead focus on specifying: i.) the type of generalized covariance, ii.) parameters in
the generalized covariance, iii.) the functions h;,j =0,...,p. Normality is neither needed
nor particularly desirable, the prior on o2 is unimportant since the value of o2 has no effect
on the interpolated values, only on the error variance. Note that the error variance does not
depend on the data values nor do the coefficients in (M2). One of the advantanges of the
use of (M2) is that it leads easily to the estimation of any linear functional of f, one simply
applies that linear functional to the entries on the right hand side of (M3). This formulation
also shows why one would minimize w* in order to design a sampling plan. Sample plan
design has received extensive consideration in the geostatistical literature, see Barnes (1989).
Finally either form of m* easily generalizes to the vector valued case as noted in Myers
(1991).

J. PILZ (Bergakademie Freiberg, Germany)

I would like to comment on some issues raised in Section 2 on interpolation and smooth-
ing. First, let me draw attention to geostatistical prediction techniques that have become
known under the heading “kriging”. From a statistical viewpoint, the kriging predictor is
merely the best linear unbiased predictor of a random function (field) defined on some spatial
domain. The natural interpolant (13) exactly coincides with the Bayesian kriging predictor
introduced by Kitanidis (1986) and Omre (1987). The well-known (universal) kriging pre-
dictor comes out as a limiting case when By = 0, i.e., when specifying a noninformative
prior for (8, 02).

Pilz (1991b) developed a robust Bayesian version of (13) which only requires approximate
knowledge of the first and second order moments of 3: Assume

bp € B and B()ZB

where B is some subset of RY supposed to be symmetric around some center point by € R7
and B is some given positive definite matrix such that Bo— B is positive semidefinite, i.e., the
prior covariance matrix of §|o? is bounded from above by o2B~. Then a robust Bayesian
interpolant minimizing the maximum possible Bayes risk (posterior variance) is given by
(13) with b replaced by

- - -1
b* = B* ((B—1 + Byl + HT A f) B* = ((B“l +B) "t + HTA"lH)
where B; maximizes the trace functional
- -1
G(B,) =tr (HT ATMH 4+ (B 4+ B,,)"l)

defined on the set of all centered moment matrices By = [g(t—b1) X (t—b1)T P(dt) generated
by the class of probability measures P over B. Obviously, b* is the three-stage hierarchical
Bayes linear estimator of 3, where, at the third stage, the hyperparameter E(3 has mean by
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and (least favourable) covariance matrix B;. For further details and explicit form solutions
for B see Pilz (1991a), Sections 6.3, 15.5 and 17, where the case of an inadequate model
for the mean function h(-)T3 is also treated.

In the geostatistics literature, the unknown covariance structure of the random function
is inferred from the variogram E(f(z) — f(z'))%. Under the assumption of covariance
stationarity, the covariance function and the variogram are equivalent tools. For interpolation
or smoothing it is very essential to capture the behaviour of the variogram near the origin,
In this respect, a warning about the use of the Gaussian covariance function (17) is in order,
even if one deals with smooth phenomena. Stein (1989) shows that slight misspecifications of
this covariance function can have dramatic effects on prediction, he also proposes a smoooth
alternative.

A full Bayesian approach to interpolation and smoothing would also require some prior
modeling for the parameters of the covariance function, e.g., for the decay rate b in (16) or
(17). Unfortunately, covariance parameters are not easy to handle in a Bayesian framework.
For the case, however, that the covariance function admits a parametric linear model

v(z,z') = biki(z —2) + -+ Opkm(z — '), m < 3

where @ = (8y,...,0m)T is an unknown vector of variance components and ki,...,kn
are given correlation functions, Bayes invariant quadratic estimators for v (invariant w.r.t.
translations f + Hf for all 8 € R?) have been derived by Stuchly (1989), see also Pilz
(1990).

A. H. SEHEULT (University of Durham, UK) and
I. A. SMITH (University of Durham, UK)

Professor O’Hagan discusses several problems in numerical analysis from a Bayesian
perspective, concentrating on estimation and design issues in interpolation, integration and
optimisation. A related problem is that of locating a zero, one which we considered in
our poster presentation at the Meeting. Our model explicitly includes the location of the
zero as random quantity, and the “slope” of the function is given a stationary covariance
structure, leading to a nonstationary function process similar (but different) to that in O’Hagan
(1978). A one-step-ahead sequential procedure selects the next design point to minimise the
mean squared error from zero of the linear Bayes predictor of the function. The variance
contribution to the mean squared error inhibits the next design point from being the zero of
the predictor (the bias contribution) by not letting it wander too far from previous design
points, and is in contrast to the optimisation method suggested by Professor O’Hagan where
succesive points are chosen to optimise the predictor. However, in a series of papers, Schagen
(1979, 1980a, 1980b, 1984) develops a sequential optimisation criterion which explores the
function before gradually homing in on the optimum. This is achieved by incorporating (after
each function evaluation) an estimate of the posterior probability of missing a “bump” in part
of the function. Schagen also includes a method for estimating the “smoothing parameter”
in the covariance function.

The distinction between expensive and cheap functions is important. Effective design
will depend crucially on careful elicitation of prior information, especially for expensive
functions. Moreover, fixed designs are questionable in this context; but if they are used
experimenters should be free to modify them after contrasting observation with prediction.
Also questionable in this context is slavish adherence to the widely-held, narrow view of
Bayesian inference expounded by Lindley (1992) that ... the conditional distribution ...
is a complete description of your uncertainty ... after the data have been seen”. Expensive
functions are often computer codes for complicated models of complex phenomena, and
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after each run of the code—each function evaluation—unanticipated relevant information
often becomes available, and in such cases it is perhaps better to regard the conditional
distribution as one input to posterior beliefs.

Finally, we believe that considerable care should be taken when attempting to compare
the relative merits of Bayesian and classical methods of numerical analysis, especially when
the former are developed in a context-free manner. The strength of Bayesian thinking is
surely to regard and treat each application as unique: the danger of fixed methodology is
that it encourages release from the burden of thinking!

REPLY TO THE DISCUSSION

The discussants have raised a number of issues, giving me helpful suggestions and a number
of references, for which I am very grateful. As I tried to make clear, many if not all of the
techniques I presented have been developed before, independently and often in quite different
guises, by workers in several disparate fields. To those references I should add the work of
Upsdell (1985), who derives a substantial amount of related theory.

Berliner, Myers and Pilz all draw attention to the work in geostatistics on methods
known there as ‘kriging’. Kriging developed as a classical ‘best linear estimator’ technique,
as explained by Pilz, and as Myers shows, the interpolant (13) can be seen just as a solution
of a set of linear equations. He thereby links it to work of numerical analysts on splines
and radial basis functions. The Bayesian nature of these theories has also been demonstrated
within those fields.

Myers points out that normality is not necessary to derive the interpolant. The robust
formulation given by Pilz emphasises this fact, and (13) can be derived even more simply as
a Bayes linear estimator as advocated by Goldstein (1988). The work of Seheult and Smith
is also based on Bayes linear estimation. Myers further points out that the interpolant is
independent of the variance parameter o2, and so the prior distribution I assume for o? is
irrelevant., Of course, posterior variances will depend on o2 and its prior distribution, and
more work is needed on how to make use of the full posterior distribution rather than just
its mean.

This brings in comments by Berliner and Betrd on the nature of sample paths. Sample
paths of the posterior distribution will indeed be less well behaved than the posterior mean,
and will indicate when it is reasonable to assume a Gaussian process prior distribution.
Seheult and Smith stress the need to think carefully about prior information. They are right,
of course, but to specify a prior distribution for a whole function in a realistic amount of
time and effort necessitates compromise. Any prior distribution can only be an approximation
to true prior beliefs, and sensitivity of posterior inference to that approximation should be
looked for. It is clear that some posterior inferences will be sensitive to the Gaussian process
prior assumption. To compute the posterior distribution of the number of local maxima (or
modes), for instance, would not be sensible, since the Gaussian process is likely to produce
‘bumpy’ realisations.

Berliner makes a number of suggestions about assessing the realism of my prior mod-
elling. I am not sure of the usefulness of his plots of covariance functions of derivatives.
Their general form seems reasonable to me, and I cannot imagine having strong opinions
about features like the separation z — z* at which the correlation between f(z) and its first
derivative f'(z*) is maximised. ButI can see that some qualitative conclusions are important,
such as that whenever f/(z) exists it will be independent of f(z).

Berliner makes useful comments on my quadrature ideas. In particular, he again reminds
us of the need for care in modelling. The realism of the Gaussian process assumption depends
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on the underlying measure with respect to which I define the integral. For instance, the Bayes-
Hermite formulation means that beliefs about the ratio of the density function being integrated
to the approximating normal density, are represented as a stationary Gaussian process. If the
tails of the density are heavier than the normal, this would not be at all realistic. More work
is needed on prior formulations appropriate to a variety of contexts. It is worth saying that
this is a strength of the Bayesian approach. Traditional numerical analysis takes account
of context only in an anecdotal and unsystematic way. Careful attention to representing
prior beliefs that truly reflect the real context, will guarantee posterior inferences that are
appropriate to that context.

Betrd and Berliner comment on optimisation. Both rightly criticise my too-simple exam-
ple, and both give references to several other Bayesian approaches to optimisation which I
will need to study. The work of Seheult and Smith on finding a zero of a function is closely
related. Their search strategy which does not initially home in too quickly, but spreads early
points in a way that gives good information about the form of the function, sounds very
interesting. '

It seems that no discussion at Pefifscola was complete without a mention of Gibbs sam-
pling, and Berliner obliges us here. It nicely reinforced my point about expensive and
cheap functions. Sampling methods do seem to be the best we have for integrating high-
dimensional cheap functions. Their inefficient use of function evaluations then matters less
than their efficient coverage of the parameter’ space. We do not yet know how to deploy
points deterministically in high dimensions in efficient, sparse ways and such that inference
from them is practical for cheap functions. But Gibbs sampling is inappropriate for expensive
functions, and I believe that research on methods for expensive functions will in the long
run allow us to dispense with randomisation completely.
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